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Abstract
Finite group extensions offer a natural language to quantum computing. In a
nutshell, one roughly describes the action of a quantum computer as consisting
of two finite groups of gates: error gates from the general Pauli group P and
stabilizing gates within an extension group C. In this communication we explore
the nice adequacy between group theoretical concepts such as commutators,
normal subgroups, groups of automorphisms, short exact sequences, wreath
products etc. and the coherent quantum computational primitives. The structure
of the single-qubit and two-qubit Clifford groups is analyzed in detail. As a
byproduct, we discover that M20, the smallest perfect group for which the
commutator subgroup departs from the set of commutators, underlies quantum
coherence of the two-qubit system. We recover similar results by looking at
the automorphisms of a complete set of mutually unbiased bases.

PACS numbers: 03.67.Pp, 03.67.Lx, 03.67.−a, 02.20.−a, 03.65.Fd, 03.65.Vf,
02.40.Dr

1. Introduction

The promises of quantum information processing are to solve computational problems and
to achieve communication security with quantitative and qualitative performances that are
beyond the reach of classical information processing. One of the main obstacles facing the
design of a quantum computer is the extreme sensitivity of quantum systems to their classical
environment, which induces the decoherence of quantum state preparations. To overcome
this limitation, many designs have been proposed for correcting the unavoidable errors, or for
preventing them occurring. Since the inception of the field, fault-tolerant procedures such
as universal bases of gates [1], quantum codes [2] or quantum teleportation based protocols
[3] have been proposed. Other approaches relate to topological quantum computation [4, 5],
decoherence free subspaces [6] or are based on sequences of measurements [7].

Despite the number of seemingly different proposals some of them are related: there is a
close relation between the ‘old fashioned’ quantum gate circuitry, fault tolerant quantum codes
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and measurements, already apparent in the stabilizer formalism [8, 11]. It was shown that a
few building block gates are enough to simulate any unitary evolution [2] and a few minimal
resources are required for measurement-only quantum computation [12]. This communication
explores the fresh view that the geometry of commutation relations [13–15] between the error
operators, their corresponding group of symmetries (i.e. the automorphisms), and the splitting
of the stabilizer group in terms of maximal normal subgroups [16], sustain the explanation
of quantum (de)coherence. Although the approach is performed for a reduced number of
qubits, novel pieces of the puzzle appear such as perfect groups with special group theoretical
or geometrical properties, and new links are established, such as the relevance of mutually
unbiased bases to quantum coherence, or the embedding of quantum topological concepts
within the Clifford group. Several recent papers concern closely related topics, see for
example [9–19].

Following an outline of useful group theoretical concepts in section 2, the structure of
one- and two-qubit Clifford groups is unraveled in section 3 in terms of split short exact
sequences, which makes use of permutation groups acting on five or six letters. Calculations
are performed using GAP [20] and MAGMA [21].

2. An outline of group commutators, group extensions and groups of automorphisms

For an introduction to group theory one may use the web page [22]. A subgroup N of a group
G is called a normal subgroup if it is invariant under conjugation: that is, for each n in N
and each g in G, the conjugate element gng−1 still belongs to N. In particular, the center
Z(G) of a group G (the set of all elements in G which commute with each element of G) is a
normal subgroup of G. The group G̃ = G/Z(G) is called the central quotient of G. A second
important example of a normal subgroup of G is provided by the subgroup G′ of commutators
(also called the derived subgroup of G). It is defined as the subgroup generated by all the
commutators [g, h] = ghg−1h−1 of elements of G. The quotient group H ab = G/G′ is an
Abelian group called the Abelianization of G and corresponds to its first homology group.
The set K(G) of all commutators of a group G may depart from G′ [23].

Our third example relates to group extensions. Let P and C be two groups such that P is
a normal subgroup of C. The group C is an extension of P by H if there exists a short exact
sequence of groups

1 → P f1→ C f2→ H → 1,

in which 1 is the trivial (single element) group. The above definition can be reformulated as
follows:

(i) P is isomorphic to a normal subgroup N of C,
(ii) H is isomorphic to the quotient group C/N .

Because in an exact sequence the image of f1 is equal to the kernel of f2, the map f1 is
injective and f2 is surjective.

* Given any groups P and H the direct product of P and H is an extension of P by H.
* The semidirect product P � H of P and H is defined as follows. The group C is an

extension of P by H (one identifies P with a normal subgroup of C) and

(i) H is isomorphic to a subgroup of C,
(ii) C = PH and

(iii) P ∩ H = 〈1〉.
One says that the short exact sequence splits.

2



J. Phys. A: Math. Theor. 41 (2008) 182001 Fast Track Communication

The wreath product M � H of a group M with a permutation group H acting on n points
is the semidirect product of the normal subgroup Mn with the group H, which acts on Mn by
permuting its components.

* Let G = Z2 �A5, in which A5 is the alternating group on five letters, then G′ is a perfect
group with order 960 and one has G′ �= K(G). Let H = Z5

2 � A5, one can think of A5

having a wreath action on Z5
2. The group G′ = H̃ = M20 [27] is the smallest perfect group

having its commutator subgroup distinct from the set of the commutators [23]. One easily
checks that M20 also corresponds to the derived subgroup W ′ of the Weyl group (also called
hyperoctahedral group) W = Z2 � S5 for the Lie algebra of type B5. For a quantum version,
see [24].

Group of automorphisms

Given the group operation ∗ of a group G, a group endomorphism is a function φ from G to
itself such that φ(g1 ∗ g2) = φ(g1) ∗ φ(g2), for all g1, g2 ∈ G. If it is bijective, it is called
an automorphism. An automorphism of G that is induced by conjugation of some g ∈ G is
called inner. Otherwise it is called an outer automorphism. Under composition the set of all
automorphisms defines a group denoted Aut(G). The inner automorphisms form a normal
subgroup Inn(G) of Aut(G), that is isomorphic to the central quotient of G. The quotient
Out(G) = Aut(G)/Inn(G) is called the outer automorphism group.

3. Quantum computing and the Clifford group

Compared to group theory, the science of quantum computing is in its infancy [11]. In quantum
codes and in quantum computing, one is interested in preventing or correcting errors that may
affect one or many physical qubits [10–26]. A frequently used error group is the general Pauli
group Pn. It consists of tensor products of the Pauli matrices [13]

σx =
(

0 1
1 0

)
, σz =

(
1 0
0 −1

)
, σy = iσxσz,

and the unit matrix σ0. Pauli matrices generate the single-qubit Pauli group P1 of order 16
and center Z(P1) = {±1,±i}. More generally the n-qubit Pauli group Pn, of order 4n+1, is
generated by the tensor product of n Pauli matrices.

Let us assume a quantum system in a state |ψ〉, and apply to it an error g belonging to
the Pauli group P so that the new state of the system is g|ψ〉. One allows unitary evolutions
U so that the new state evolves as Ug|ψ〉 = UgU †U |ψ〉. For stabilizing the error within
the Pauli group P , one requires that UgU † ∈ P . The set of operators leaving P invariant
under conjugation is the normalizer C in the unitary group U, also known as the Clifford group
[8–10]3. Within a unitary group one has the equality U † = U−1. As a result, the group P is
a normal subgroup of C and one vectors and one may use the powerful formalism of group
extensions to report on it. Additionally some subgroups of C, which have the error group P
as a normal subgroup, will play a role for displaying the quantum coherence.

The Clifford group, stabilizing the (error) Pauli group Pn on n-qubits, will be denoted Cn.

One learned from Gottesman–Knill theorem that the Hadamard gate H = 1/
√

2
(1 1

1 −1

)
and

3 The Clifford group (also known as the Jacobi group) was introduced in the context of quantum stabilizer codes
by D Gottesman. It does not explicitly refer to Clifford algebras in which the Clifford group means ‘the set of
invertible elements in the Clifford algebra that stabilizes under twisted conjugation’. In the context of an n-qubit
system, a Clifford algebra may be obtained by selecting a set of mutually anti-commuting observables as for the Dirac
relativistic equation.
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the phase gate P = Diag(1, i) are in the one-qubit Clifford group C1, and that the controlled-Z
gate CZ = Diag(1, 1, 1,−1) is in the two-qubit Clifford group C2. Any gate in Cn may be
generated from the application of gates from C1 and C2 [8, 9]. Clifford group Cn on n-qubits
has order |Cn| = 2n2+2n+3 ∏n

j=1 4j − 1 [10].
Below we will concentrate on the properties of the Clifford group related to one and

two qubits, using the group theoretical package GAP4 [20]. Generation of the gates will be
ensured by the use of cyclotomic numbers, as described in Sec 18 of the GAP4 reference
manual. For example, the elements 1,−1, i and 21/2 will be modeled as the roots of unity
E(1), E(2), E(4) and as ER(2), respectively.

3.1. The Clifford group on a single qubit

The one-qubit Clifford group is generated by H and P as C1 = 〈H,P 〉. It has order |C1| = 192,
its center is Z(C1) = Z8 and the derived subgroup C′

1 equals the special linear group SL(2, 3).
The central quotient is C̃1 = S4 and one obtains the Abelianization as the direct product
Cab

1 = Z4 × Z2.
Using the method described in section 2 two split extensions follow. The first one is

attached to C′
1 = SL(2, 3) as follows:

1 → SL(2, 3)→C1 → Z2 × Z3 → 1.

The second one is attached to the Pauli group

1 → P1→C1 → D12 → 1,

in which D12 = Z2 × S3 is the dihedral symmetry group of a regular hexagon.

3.2. The Clifford group on two qubits

The two-qubit Pauli group may be generated as P2 = 〈σx ⊗ σx, σz ⊗ σz, σx ⊗ σy, σy ⊗ σz,

σz ⊗ σx〉. It is of order 64 and has center Z(P2) = Z(P1). The two-qubit Clifford group, of
order 92160, may be generated from H,P and CZ as C2 = 〈H ⊗ H,H ⊗ P,CZ〉. Its center
is Z(C2) = Z(C1) and the central quotient C̃2 is found to satisfy the exact sequence

1 → U6 → C̃2 → Z2 → 1,

in which we introduced the notation U6 = C̃′
2 = Z×4

2 � A6. Another important relationship is
U6 = Aut(P2)

′, i.e. U6 encodes the commutators of the Pauli group automorphisms. It turns
out that the group C̃2 only contains two normal subgroups Z×4

2 and U6. The group U6, of order
5760, is a perfect group. It can be seen as a parent of the six element alternating group A6. Its
outer automorphism group Out(U6) is the same, equal to the Klein group Z2 × Z2.

The group U6 is an important maximal subgroup of several sporadic groups. The group of
smallest size where it appears is the Mathieu group M22. Mathieu groups are sporadic simple
groups, so that U6 is not normal in M22. It appears in the context of a subgeometry of M22

known as an hexad. Let us recall the definition of Steiner systems. A Steiner system S(a, b, c)

with parameters a, b, c, is a c-element set together with a set of b-element subsets of S (called
blocks) with the property that each a-element subset of S is contained in exactly one block.
A finite projective plane of order q, with the lines as blocks, is an S(2, q + 1, q2 + q + 1),
because it has q2 + q + 1 points, each line passes through q + 1 points, and each pair of distinct
points lies on exactly one line. Any large Mathieu group can be defined as the automorphism
(symmetry) group of a Steiner system [28]. The group M22 stabilizes the Steiner system
S(3, 6, 22) comprising 22 points and six blocks, each set of three points being contained
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exactly in one block4. Any block in S(3, 6, 22) is a Mathieu hexad, i.e. it is stabilized by the
general alternating group U6.

There is a relationship between the two-qubit Clifford and Pauli groups

C2/P2 = Z2 × S6,

which features the important role of the six-letter symmetric group S6. The latter governs the
Pauli graph attached to the two-qubit system, being the automorphism group of generalized
quadrangle of order 2 W(2) [13]. The group S6 is peculiar among the symmetric permutation
groups as having an outer automorphism group Z2.

3.3. Quantum coherence within the two-qubit system

Topological quantum computing based on anions has been proposed as a way of encoding
quantum bits in nonlocal observables that are immune of decoherence [4, 29]. The basic idea
is to use pairs |v, v−1〉 of ‘magnetic fluxes’ playing the roles of the qubits and permuting them
within some large enough non-Abelian finite group G such as A5. The ‘magnetic flux’ carried
by the (anyonic) quantum particle is labeled by an element of G, and ‘electric charges’ are
labeled by irreducible representation of G [30].

The exchange within G modifies the quantum numbers of the fluxons according to the
fundamental logical operation

|v1, v2〉 → ∣∣v2, v
−1
2 v1v2

〉
,

a form of Aharonov–Bohm interactions, which is nontrivial in a non-Abelian group. This
process can be shown to produce universal quantum computation. It is intimately related to
topological entanglement, the braid group and unitary solutions of the Yang–Baxter equation
[31]

(R ⊗ I )(I ⊗ R)(R ⊗ I ) = (I ⊗ R)(R ⊗ I )(I ⊗ R),

in which I denotes the identity transformation and the operator R: V ⊗ V → V ⊗ V acts on
the tensor product of the bi-dimensional vector space V . One elegant unitary solution of the
Yang–Baxter equation is a universal quantum gate known as the Bell basis change matrix

R = 1/
√

2

⎛
⎜⎜⎝

1 0 0 1
0 1 −1 0
0 1 1 0

−1 0 0 1

⎞
⎟⎟⎠ .

It is straightforward to see two-qubit topological quantum computing as another group
extension of the Pauli group. One may introduce a subgroup of the Clifford group, of
order 15360, that we denote the Bell group as follows:

B2 = 〈H ⊗ H,H ⊗ P,R〉.
The Bell group has center Z8 and its central quotient only contains two normal subgroups Z×4

2
and M20 = Z×4

2 � A5. The group M20 was already quoted in section 2 as being the smallest
perfect group having the set of commutators departing from the commutator subgroup. The
relationship between the Bell and Pauli groups

B2/P2 = Z2 × S5

displays the important role of the five letters symmetric group S5. At this point, it may be useful
to mention that A5 is the automorphism group of the icosahedron. Icosahedral symmetry and
quantum coherence seems to be related in recent fullerene experiments [32].
4 There exists up to equivalence a unique S(5,8,24) Steiner system called a Witt geometry. The group M(24) is the
automorphism group of this Steiner system, that is, the set of permutations which map every block to some other
block. The subgroups M(23) and M(22) are defined to be the stabilizers of a single point and two points respectively.
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Table 1. Group structure of an independent set of the two-qubit (g2 to g4) and three-qubit systems
(g2 to g6). G denotes the identified group and Aut(G) the corresponding automorphism group. Q8
and D8 are the eight-element quaternion and dihedral groups.

gi g2 g3 g4 g5 g6

G Z×2
2 (Z4 × Z2) �Z2 (Z2 × Q8) �Z2 Z2 × ((Z2 × Q8) �Z2) g6

Aut(G) D8 Z2 × S4 Z2 � A5 Z×2
2 � A5 Z×3

2 � A5

|Aut(G)| 8 48 1920 61 440 196 6080

3.4. Quantum coherence within mutually unbiased bases

To our knowledge, the relationship between mutually unbiased bases (MUBs) of the Pauli
group and the Clifford group has not yet been established. Two orthonormal bases are said
to be mutually unbiased if each common state of one basis gives rise to the same probability
distribution when measured with respect to the other basis. For prime power dimensions
pm, complete sets of MUBs have cardinality pm + 1 and can be determined using different
techniques such as the additive characters over a Galois field [33] 5. In composite dimensions,
MUBs strongly rely on projective lines over finite rings [36]. In addition, the continuous
variable case was addressed recently [37].

Commuting/non-commuting relations between the Pauli operators of the two-qubit
system have been determined [13]. The Pauli graph admits several decompositions: one
of them is based on its minimum vertex cover (the Petersen graph) and a maximal independent
set (of size five). If one uses a geometrical representation, operators correspond to the points
of the geometry, maximal sets of mutually commuting operators, i.e. MUBs, correspond to
the lines of the geometry, and a complete set of MUBs corresponds to an ovoid (the maximum
number of mutually disjoint lines). The geometry of the two-qubit system is the smallest
nontrivial generalized quadrangle. Due to the perfect duality between the 15 points and 15
lines of the quadrangle, the cardinality of a maximal independent set and the one of the ovoid
is the same.

These graph theoretical and geometrical features of MUBs have a group theoretical
counterpart that one may find in the group of automorphisms attached to a maximal independent
set. Let us denote mi (i = 1 . . . 5) the elements of such a maximal set, one may form groups of
increasing size g2 = 〈m1,m2〉, ... g4 = 〈m1,m2,m3,m4〉. (g1 is the trivial group and g5 = g4).
The groups gi and the corresponding groups of automorphisms Aut(gi) are identified in
table 1. One readily observes that the group of automorphisms of the selected maximal
independent set/ovoid of the two-qubit system is isomorphic to the wreath product Z2 � A5

encountered in topological quantum computing. One concludes that some symmetries in a
complete set of MUBs also provide a signature of quantum coherence. Let us mention that
the hyperoctahedral group Z2 � S5, of order 3840, corresponds to the automorphism group of
the code ((5, 6, 2)), the first instance of a non-additive quantum code [38].

The same approach can be applied to the three-qubit system and higher-order qubit
systems. For the three-qubit system, the size of a maximal independent set is found to be
seven (it is different from the size 9 = 23 + 1 of a complete set of MUBs). The corresponding
automorphism group encompasses one of the two-qubit systems as shown in table 1. The
group Aut(gn) (n > 4) is found to be isomorphic to the wreath product Z×m

2 � A5, with
m = n − 3. Its central quotient equals its derived subgroup and may be identified to the

5 Power of prime dimensions also plays a pivotal role in the number theoretical approach of 1/f noise developed by
one of us [34, 35].
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perfect group (Z×4
2 )�m

�A5. These perfect groups of order 960, 15360, 245760 contain some
elements, which are not commutators6.

4. Conclusion

Advanced group theoretical tools may be used to explore fault tolerance in quantum computing.
We found some fingerprints of quantum (de)coherence in exceptional groups such as U6

(the stabilizer of an hexad in M22), in the group M20, and in the automorphism groups of
mutually unbiased bases. Using this approach, disparate concepts such as the stabilizer
formalism, topological quantum computing [39] and the mathematical approach of quantum
complementary, tend to merge. Future work will be devoted to arbitrary n-qudit systems and
composite systems, and the link to quantum codes.

Acknowledgments

The authors acknowledge the support of the PEPS program (Projects Exploratoires
Pluridisciplinaires) from the ST2I department at CNRS, France (Sciences et Technologies
de l’Information et de la Communication).

References

[1] Boykin O, Mor T, Pulver M, Roychowdhury V and Vatan F 1999 On universal and fault-tolerant quantum
computing: a novel basis and a new constructive proof of universality for Shor’s basis 40th Annual
Symposium on the Foundations of Computer Science pp 486–94 (Preprint quant-ph/9906054)

[2] S Francoise J P, Naber G L and Tsou S T 2006 Quantum error correction and fault tolerance Encyclopedia of
Mathematical Physics vol 4 ed D Gottesman (Oxford: Elsevier) pp 196–201 (Preprint quant-ph/0507174)

[3] Gottesman D and Chuang I L 1999 Quantum teleportation is a universal computational primitive
Nature 402 390–2

[4] Kitaev A Yu 1997 Fault-tolerant quantum computation with anions Preprint quant-ph/9707021
[5] Raussendorf R, Harrington J and Goyal K 2007 Topological fault-tolerance in cluster state quantum computation

New J. Phys. 9 199
[6] Wu L A, Zanardi P and Lidar D A 2005 Holonomic quantum computation in decoherence-free subspaces Phys.

Rev. Lett. 95 130501
[7] Perdrix S and Jorrand Ph 2006 Classical-controlled quantum computation Math. Structures Comp. Sci.

16 601–20
[8] Gottesman D 1998 The Heisenberg representation of quantum computers Preprint quant-ph/9807006
[9] Clark S, Jozsa R and Linden N 2008 Generalized Clifford groups and simulation of associated quantum circuits

Quant. Inf. Comp. 8 106–26
[10] Calderbank A R, Rains E M, Schor P W and Sloane N J A 1998 Quantum error correction via codes over GF(4)

IEEE Trans. Inform. Theory 44 1369–87
[11] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge

University Press)
[12] Perdrix S 2007 Toward minimal resources of measurement-based quantum computation New J. Phys. 9 206
[13] Planat M and Saniga M 2008 On the Pauli graphs of N-qudits Quant. Inf. Comp. 8 127–46
[14] Planat M, Saniga M and Kibler M 2006 Quantum entanglement and projective ring geometry Sigma 2 66
[15] Saniga M and Planat M 2007 Multiple qubits as symplectic polar spaces of order two Adv. Stud. Theor. Phys. 1

1–4
[16] Planat M 2007 Clifford quantum computer and the Mathieu groups Preprint quant-ph/0711.1733
[17] Bombin H and Martin-Delgado M A 2006 Topological quantum distillation Phys. Rev. Lett. 97 180501
[18] Aerts D and Czachor M 2007 Cartoon computation: Quantum-like algorithms without quantum mechanics

J. Phys. A: Math. Theor. 40 F259–66

6 The calculation is performed using theorem 6.6 in [23].

7

http://www.arxiv.org/abs/quant-ph/9906054
http://www.arxiv.org/abs/quant-ph/0507174
http://dx.doi.org/10.1038/46503
http://www.arxiv.org/abs/quant-ph/9707021
http://dx.doi.org/10.1088/1367-2630/9/6/199
http://dx.doi.org/10.1103/PhysRevLett.95.130501
http://dx.doi.org/10.1017/S096012950600538X
http://www.arxiv.org/abs/quant-ph/9807006
http://dx.doi.org/10.1109/18.681315
http://dx.doi.org/10.1088/1367-2630/9/6/206
http://www.arxiv.org/abs/quant-ph/0711.1733
http://dx.doi.org/10.1103/PhysRevLett.97.180501
http://dx.doi.org/10.1088/1751-8113/40/13/F01


J. Phys. A: Math. Theor. 41 (2008) 182001 Fast Track Communication

[19] Zeier R, Grassl M and Beth T 2004 Gate simulation and lower bounds on the simulation time Phys. Rev.
A 70 032319

[20] The GAP Group 2004 GAP—Groups, Algorithms, and Programming, Version 4.4 (http://www.gap-system.org)
[21] Bosma W, Cannon J and Playoust C 1997 The Magma algebra system. I. The user language J. Symb.

Comput. 24 235–65
[22] Milne J S Group theory (available on line at http://www.jmilne.org/math/)
[23] Kappe L C and Morse R F On commutators in groups (available on line at http://faculty.evansville.edu/

rm43/publications/commutatorsurvey.pdf)
[24] Banica T, Bichon J and Collins B 2007 The hyperoctahedral quantum group Preprint math.RT/0701859
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